Principles of Communications ECS 332

Dr. Prapun Suksompong

prapun@siit.tu.ac.th

Source Coding

Office Hours: BKD 3601-7 Monday 1 Friday 1

14:40-16:00 14:00-16:00

Morse code

(wired and wireless)

- Telegraph network
- Samuel Morse, 1838

• A sequence of on-off tones (or , lights, or clicks)

[http://www.wolframalpha.com/input/?i=Morse+Code+%22I+Love+ECS332!%22]

Morse code: Key Idea

Frequently-used characters (e,t) are mapped to short codewords.

Basic form of compression.

Morse code: Key Idea Frequently-used characters are mapped to short codewords. Relative frequencies of letters in the

Morse code: Key Idea Frequently-used characters are ^{0.14} mapped to short codewords. 0.12 0.1 0.08 0.06 -0.04 0.02 Relative frequencies of letters in the 0 abcdefghijklmnopqrstuvwxyz English language

รหัสมอร์สภาษาไทย

ารัสสัญ	เกาหมักระ	สมพอร์สภาษาไทย	
ที่เริ่มใช้เมื่อ 1 พฤศจิกายน 2466			
1. 2. 3. 4. 6. 7. 8. 9. 90.		26 27 28 29 30 30 31 32 33 34 35	4 9 8 99 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 12 13 m 14 m 16 m 10 m 17		36, 37, 38, 38, 40, 41, 42,	
19 20 21 22 23 24 25	N N N N N N N N N N N N N N N N N N N	44, 45, 46, 47, 40, 40, 50,	ร้ ไม่เลยก ไม่ไทร เป็นรังการ ไม่เรื่องการ

Approximately 20% are letter 'a's

Approximately 50% are number '1's

Shannon–Fano coding

- Proposed in Shannon's "A Mathematical Theory of Communication" in 1948
- The method was attributed to Fano, who later published it as a technical report.
- Should not be confused with
 - Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with
 - Shannon–Fano–Elias coding (also known as Elias coding), the precursor to arithmetic coding.

Huffman Code

- MIT, 1951
- Information theory class taught by Professor Fano.
- Huffman and his classmates were given the choice of
 - a term paper on the problem of finding the most efficient binary code.

or

- a final exam.
- Huffman, unable to prove any codes were the most efficient, was about to give up and start studying for the final when he hit upon the idea of using a frequency-sorted binary tree and quickly proved this method the most efficient.
- Huffman avoided the major flaw of the suboptimal Shannon-Fano coding by building the tree from the bottom up instead of from the top down.

Huffman Coding in MATLAB (1)

pX = [0.5 0.25 0.125 0.125]; % pmf of X SX = [1:length(pX)]; % Source Alphabet [dict,EL] = huffmandict(SX,pX); % Create codebook

```
%% Pretty print the codebook.

codebook = dict;

for i = 1:length(codebook)

codebook{i,2} = num2str(codebook{i,2});

end

codebook
```

```
% Try to encode some random source string
n = 5; % Number of source symbols to be generated
sourceString = randsrc(1,10,[SX; pX]) % Create data using pX
encodedString = huffmanenco(sourceString,dict) % Encode the data
```

[Huffman_Demo_Ex1]

Huffman Coding in MATLAB (2)

codebook =

[1] '0'
[2] '1 0'
[3] '1 1 1'
[4] '1 1 0'

sourceString =

1 4 4 1 3 1 1 4 3 4

encodedString =

Huffman Coding: Source Extension

14

Huffman Coding: Uniform pmf

(no source extension)

