Principles of Communications ECS 332

Dr. Prapun Suksompong $\stackrel{\text { Srapun@sitittu.ac.th }}{\text { Source Coding }}$

Morse code

(wired and wireless)

- Telegraph network
- Samuel Morse, 1838

- A sequence of on-off tones (or , lights, or clicks)

SAMUEL MORSE DICTATES A LETTER TO HIS SECRETARY.

Example

WolframAlpha*

```
Morse Code "I Love ECS332!"

```

三 Examples $\sim \mathcal{A}$ Random

```

\section*{Input interpretation:}

Morse code I Love ECS332!


\section*{Morse code: Key Idea}

Frequently-used characters (e,t) are mapped to short codewords.


Basic form of compression.

\section*{Morse code: Key Idea}

Frequently-used characters are mapped to short codewords.

Relative frequencies of letters in the

\section*{Morse code: Key Idea}

Frequently-used characters are


Relative frequencies of letters in the
English language

\section*{SǨǎเบอธ์สกาษาที่}


\section*{Ex. DMS (1)}
\[
\mathcal{S}_{X}=\{a, b, c, d, e\} \quad p_{X}(x)= \begin{cases}1 / 5, & x \in\{a, b, c, d, e\} \\ 0, & \text { otherwise }\end{cases}
\]

Information
Source
\(\begin{array}{lllllllll}a & c & a & c & e & c & d & b & c \\ d & e \\ d & e & e & d & a & b & b & b & d\end{array}\)
b b a a b e b e d c
\(c e d b c e c a \operatorname{c}+\)
a a \(e\) a c \(c\) a a d c
\(d e e a\) a \(c a \operatorname{a}\) a b
b c a e b b e d b c

d a b c a b c d d e
\(d \mathrm{c} e \mathrm{a}\) b a a cad \(\longrightarrow\)

Approximately 20\% are letter 'a's

\section*{Ex. DMS (2)}
\[
\mathcal{S}_{X}=\{1,2,3,4\}
\]
\[
p_{x}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
\]

\author{
Information \\ Source
}
\begin{tabular}{llllllllll}
2 & 1 & 1 & 2 & 1 & 4 & 1 & 1 & 1 & 1 \\
1 & 1 & 4 & 1 & 1 & 2 & 4 & 2 & 2 & 1 \\
3 & 1 & 1 & 2 & 3 & 2 & 4 & 1 & 2 & 4 \\
2 & 1 & 1 & 2 & 1 & 1 & 3 & 3 & 1 & 1 \\
1 & 3 & 4 & 1 & 4 & 1 & 1 & 2 & 4 & 1 \\
4 & 1 & 4 & 1 & 2 & 2 & 1 & 4 & 2 & 1 \\
4 & 1 & 1 & 1 & 1 & 2 & 1 & 4 & 2 & 4 \\
2 & 1 & 1 & 1 & 2 & 1 & 2 & 1 & 3 & 2 \\
2 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 3 & 2 \\
2 & 1 & 1 & 2 & 1 & 4 & 2 & 1 & 2 & 1
\end{tabular}

Approximately 50\% are number ' 1 's

\section*{Shannon-Fano coding}
- Proposed in Shannon's "A Mathematical Theory of Communication" in 1948
- The method was attributed to Fano, who later published it as a technical report.
- Should not be confused with
- Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with
- Shannon-Fano-Elias coding (also known as Elias coding), the precursor to arithmetic coding.

\section*{Huffman Code}
- MIT, 1951
- Information theory class taught by Professor Fano.
- Huffman and his classmates were given the choice of
- a term paper on the problem of finding the most efficient binary code.
or
- a final exam.
- Huffman, unable to prove any codes were the most efficient, was about to give up and start studying for the final when he hit upon the idea of using a frequency-sorted binary tree and quickly proved this method the most efficient.
- Huffman avoided the major flaw of the suboptimal Shannon-Fano coding by building the tree from the bottom up instead of from the top down.

\section*{Huffman Coding in MATLAB (1)}
```

pX = [0.5 0.25 0.125 0.125]; % pmf of X
SX = [1:length(pX)]; % Source Alphabet
[dict,EL] = huffmmandict(SX,pX); % Create codebook

```
\(\% \%\) Pretty print the codebook.
codebook = dict;
for \(\mathrm{i}=1\) :length(codebook)
    codebook \(\{\mathrm{i}, 2\}=\) num \(2 \operatorname{str}(\operatorname{codebook}\{\mathrm{i}, 2\})\);
end
codebook
\% Try to encode some random source string
\(\mathrm{n}=5 ; \%\) Number of source symbols to be generated
sourceString \(=\operatorname{randsrc}(1,10,[\mathrm{SX} ; \mathrm{pX}]) \%\) Create data using pX
encodedString \(=\) huffmanenco(sourceString,dict) \(\%\) Encode the data

\section*{Huffman Coding in MATLAB (2)}
codebook \(=\)
\begin{tabular}{|c|c|}
\hline [1] & '0' \\
\hline [2] & '1 0 ' \\
\hline & \(\begin{array}{lll}1 & 1 & 1\end{array}\) \\
\hline & '1 1 0' \\
\hline
\end{tabular}
sourceString \(=\)
\[
\begin{array}{llllllllll}
1 & 4 & 4 & 1 & 3 & 1 & 1 & 4 & 3 & 4
\end{array}
\]
encodedString \(=\)
\begin{tabular}{llllllllllllllllllllll}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0
\end{tabular}

\section*{Huffman Coding: Source Extension}


\section*{Huffman Coding: Uniform pmf}
(no source extension)
```

